Effect of Trap Regulation on Vacuum DC Surface Flashover Characteristics of Nano-ZnO/PI Film

Author:

Wu JiangORCID,Zhang BoORCID,Li Tianjiao,Du Yan,Cao Wen,Yang HaoORCID

Abstract

The operating safety of spacecraft in space environments is closely related to the surface discharging phenomenon of dielectrics such as polyimide (PI) film in solar arrays; moreover, carrier traps in the dielectric can affect its insulation performance. Therefore, to improve the vacuum surface flashover characteristics of PI film by nano modification and reveal the effect of trap distribution on the flashover of PI composite film, first, the original PI and nano-ZnO/PI composite films with different additive amounts (0.5, 1, 2, and 3 wt.%) were prepared by in situ polymerization and their performance was evaluated by the physicochemical properties characterized by methods such as thermogravimetric analysis; second, the surface traps of the original and nanocomposite films were measured and calculated by surface potential decay method, and the carrier mobility was also obtained; finally, the vacuum direct current (DC) surface flashover characteristics and bulk resistivity of all the film samples were measured and analyzed. The experiment results showed that with the increase in the amount of nano-ZnO, both the shallow and deep trap density increased significantly, while the trap energy varied slightly, and the surface flashover voltage also increased obviously. Based on the multi-core model, the increases in the shallow and deep trap density after the introduction of nano-ZnO into the PI matrix was analyzed from the microscopic perspective of the interface. Based on the comparative analysis of the trap distribution and surface flashover voltage characteristics, a bilayer model of vacuum DC surface flashover development was proposed. In the bilayer model, deep traps and shallow traps play a dominant role in the vacuum–solid interface and the inner surface of the dielectric, respectively, and increasing the trap density could effectively inhibit secondary electron multiplication on the surface and accelerate charge dissipation inside the film. Consequently, nano-ZnO can purposefully control the trap distribution, and then improve the flashover characteristics of nano-ZnO/PI composite films, which provides a new approach for improving the spacecraft material safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of polyethylene-based nano-montmorillonite composite interfaces on charge transport;Journal of Materials Science: Materials in Electronics;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3