Using Polymer–Surfactant Charge Ratio to Control Synergistic Flocculation of Anionic Particulate Dispersions

Author:

Hill ChristopherORCID,Abdullahi Wasiu,Crossman Martin,Griffiths Peter CharlesORCID

Abstract

This study investigates the flocculation induced destabilization of particulate dispersions by oppositely charged polymer–surfactant complexes, with a particular focus on controlling interactions by modulating the charge ratio Z, (where Z = [+polymer]/[−surfactant]) via [−surfactant] at fixed Cpolymer. Cationic hydroxyethyl cellulose (cat-HEC) polymer-sodium dodecylsulfate (SDS) complexes were prepared with either excess polymer (Z > 1) or surfactant (Z < 1) charges. Anionic particulate dispersions (Ludox and polystyrene-butadiene Latex) were then exposed to the complexes, and solvent relaxation NMR was used to characterize the particle surfaces before and after exposure. In both particulate dispersions, flocculation induced destabilization was enhanced after exposure to cat-HEC-SDS complexes with Z > 1, leaving any excess particle surfaces uncoated after gentle centrifugation. However, complexes with Z < 1 showed no adsorption and destabilization in the Ludox dispersions and only slight destabilization in the Latex dispersions due to possible hydrophobic interactions. Substituting SDS for non-ionic surfactant (C12E6) showed no additional destabilization of the dispersions, but post-centrifugation relaxation rates indicated preferential adsorption of C12E6 onto the particle surfaces. Since the dominant forces are electrostatic, this study highlights the possibility of controlling the interactions between oppositely charged polymer–surfactant complexes and particle surfaces by modulating Z through [−surfactant].

Funder

Unilever

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3