Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules

Author:

Dobrosielska Marta,Dobrucka Renata,Kozera Paulina,Kozera Rafał,Kołodziejczak Marta,Gabriel Ewa,Głowacka JuliaORCID,Jałbrzykowski Marek,Kurzydłowski Krzysztof J.ORCID,Przekop Robert E.

Abstract

Amorphous diatomite was used as a filler for a thermoplastic polymer of polyamide 11 obtained from natural sources. The diatomite particles of different sizes were previously fractionated by sedimentation to obtain powders with varying particle size distribution, including powders with or without frustule particles, crushed, uncrushed or agglomerated. Biocomposites containing 2.5, 5, 10 and 20% filler were tested for their mechanical properties, including tensile strength, flexural strength and impact strength. In addition, a particle size analysis (by Dynamic Light Scattering, DLS) was performed and the dispersion of the filler in the polymer matrix (Scanning Electron Microscopy, SEM), thermal parameters (Differential Scanning Calorimetry, DSC, and Dynamic Mechanical Analysis, DMA) were determined. Testing showed that biocomposites modified with diatomaceous earth have a higher mechanical strength than the reference system, especially with larger amounts of the filler (10 and 20%), e.g., the tensile strength of pure PA11 is about 46 MPa, while 20OB and 20OF 47.5 and 47 MPa, respectively, while an increase in max. flexural strength and flexural modulus is also observed compared to pure PA11 by a maximum of 63 and 54%, respectively Diatomaceous earth can be obtained in various ways—it is commercially available or it is possible to breed diatoms in laboratory conditions, while the use of commercially available diatomite, which contains diatoms of different sizes, eliminates the possibility of controlling mechanical parameters by filling biocomposites with a filler with the desired particle size distribution, and diatom breeding is not possible on an industrial scale. Our proposed biocomposite based on fractionated diatomaceous earth using a sedimentation process addresses the current need to produce biocomposite materials from natural sources, and moreover, the nature of the process, due to its simplicity, can be successfully used on an industrial scale.

Funder

European Union

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3