Construction of Three-Dimensional Network Structure in Polyethylene-EPDM-Based Phase Change Materials by Carbon Nanotube with Enhanced Thermal Conductivity, Mechanical Property and Photo-Thermal Conversion Performance

Author:

He Yunbing,Chen YanfengORCID,Liu Cuiyin,Huang Lisha,Huang Chuyu,Lu Junhua,Huang Hong

Abstract

High thermal conductivity and good mechanical properties are significant for photo-thermal conversion in solar energy utilization. In this work, we constructed a three-dimensional network structure in polyethylene (PE) and ethylene-propylene-diene monomer (EPDM)-based phase change composites by mixing with a carbon nanotube (CNT). Two-dimensional flake expanded graphite in PE-EPDM-based phase change materials and one-dimensional CNT were well mixed to build dense three-dimensional thermal pathways. We show that CNT (5.40%wt)-PE-EPDM phase change composites deliver excellent thermal conductivity (3.11 W m−1 K−1) and mechanical properties, with tensile and bending strength of 10.19 and 21.48 MPa. The melting and freezing temperature of the optimized phase change composites are measured to be 64.5 and 64.2 °C and the melting and freezing latent enthalpy are measured to be 130.3 and 130.5 J g−1. It is found that the composite phase change material with high thermal conductivity is conducive to the rapid storage of solar energy, so as to improve the efficiency of heat collection.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3