Fast Granulation by Combining External Sludge Conditioning with FeCl3 Addition and Reintroducing into an SBR

Author:

Liu Jun,Yin Shunchang,Xu Dong,Piché-Choquette SarahORCID,Ji Bin,Zhou Xin,Li Jun

Abstract

The separation of light and heavy sludge, as well as the aggregation rate of floccular sludge, are two critical aspects of the rapid granulation process in sequencing batch reactors (SBRs) in the early stages. In this study, we investigated the impact of a method to improve both sludge separation and granulation by coupling effluent sludge external conditioning with FeCl3 addition and then reintroducing it into the SBR. By supplementation with 0.1 g Fe3+ (g dried sludge (DS))−1, the concentration of extracellular polymeric substances (EPS) and sludge retention efficiency greatly increased, whereas the moisture content and specific oxygen uptake rate (SOUR) sharply decreased within 24 h external conditioning. Aggregates (1.75 ± 0.05 g·L−1) were reintroduced into the bioreactor once daily from day 13 to day 15. Afterwards, on day 17, aerobic granules with a concentration of mixed liquor suspended solids (MLSS) of 5.636 g/L, a sludge volume index (SVI30) of 45.5 mL/g and an average size of 2.5 mm in diameter were obtained. These results suggest that the external conditioning step with both air-drying and the addition of Fe3+ enhanced the production of EPS in the effluent sludge and improved rapid aggregation and high sludge retention efficiency. Consequently, the reintroduced aggregates with good traits shortened the time required to obtain mature aerobic granular sludge (AGS) and properly separate light and heavy sludge. Indeed, this method jump-started the aggregation, and rapid granulation processes were successful in this work. Additionally, while the removal efficiency of chemical oxygen demand (COD) and nitrogen from ammonium (NH4+-N) decreased when reintroducing the treated sludge into the SBR, such properties increased again as the AGS matured in the SBR, up to removal efficiencies of 96% and 95%, respectively.

Funder

State Key Laboratory of Pollution Control and Resource Reuse Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3