Abstract
The incomplete degradation of bio-based and biodegradable plastics (BBPs) in soils causes multiple threats to soil quality, human health, and food security. Plastic residuals can interact with soil microbial communities. We aimed to link the structure and enzyme-mediated functional traits of a microbial community composition that were present during poly (butylene succinate-co-butylene adipate (PBSA) decomposition in soil with (PSN) and without (PS) the addition of nitrogen fertilizer ((NH4)2SO4). We identified bacterial (Achromobacter, Luteimonas, Rhodanobacter, and Lysobacter) and fungal (Fusarium, Chaetomium, Clonostachys, Fusicolla, and Acremonium) taxa that were linked to the activities of ß-glucosidase, chitinase, phosphatase, and lipase in plastic-amended soils. Fungal biomass increased by 1.7 and 4 times in PS and PSN treatment, respectively, as compared to non-plastic amended soil. PBSA significantly changed the relationships between soil properties (C: N ratio, TN, and pH) and microbial community structure; however, the relationships between fungal biomass and soil enzyme activities remained constant. PBSA significantly altered the relationship between fungal biomass and acid phosphatase. We demonstrated that although the soil functions related to nutrient cycling were not negatively affected in PSN treatment, potential negative effects are reasoned by the enrichment of plant pathogens. We concluded that in comparison to fungi, the bacteria demonstrated a broader functional spectrum in the BBP degradation process.
Subject
Polymers and Plastics,General Chemistry