Removal of Scale-Forming Ions and Oil Traces from Oil Field Produced Water Using Graphene Oxide/Polyethersulfone and TiO2 Nanoribbons/Polyethersulfone Nanofiltration Membranes

Author:

Ashraf Tarek,Alfryyan Nada,Nasr MervatORCID,Ahmed Sayed,Shaban MohamedORCID

Abstract

Treatment of produced water in oil fields has become a tough challenge for oil producers. Nanofiltration, a promising method for water treatment, has been proposed as a solution. The phase inversion technique was used for the synthesis of nanofiltration membranes of polyethersulfone embedded with graphene oxide nanoparticles and polyethersulfone embedded with titanium nanoribbons. As a realistic situation, water samples taken from the oil field were filtered using synthetic membranes at an operating pressure of 0.3 MPa. Physiochemical properties such as water flux, membrane morphology, flux recovery ratio, pore size and hydrophilicity were investigated. Additionally, filtration efficiency for removal of constituent ions, oil traces in water removal, and fouling tendency were evaluated. The constituent ions of produced water act as the scaling agent which threatens the blocking of the reservoir bores of the disposal wells. Adding graphene oxide (GO) and titanium nanoribbons (TNR) to polyethersulfone (PES) enhanced filtration efficiency, water flux, and anti-fouling properties while also boosting hydrophilicity and porosity. The PES-0.7GO membrane has the best filtering performance, followed by the PES-0.7TNR and pure-PES membranes, with chloride salt rejection rates of 81%, 78%, and 35%; oil rejection rates of 88%, 85%, and 71%; and water fluxes of 85, 82, and 42.5 kg/m2 h, respectively. Because of its higher hydrophilicity and physicochemical qualities, the PES-0.7GO membrane outperformed the PES-0.7TNR membrane. Nanofiltration membranes embedded with nanomaterial described in this work revealed encouraging long-term performance for oil-in-water trace separation and scaling agent removal.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3