Synthesis and Application of Levofloxacin–Tin Complexes as New Photostabilizers for Polyvinyl Chloride

Author:

Fadhil Marwa,Yousif EmadORCID,Ahmed Dina S.,Kariuki Benson M.ORCID,El-Hiti Gamal A.ORCID

Abstract

Polyvinyl chloride (PVC) is a synthetic polymer with a wide range of applications with impact on our daily life. It can undergo photodegradation with toxic products that are hazardous to both human health and the environment. In addition, photodegradation shortens the useful lifetime of the material. Elongation of the effective lifespan of PVC is, therefore, a salient area of research. Recently, a lot of attention has been directed toward the design, preparation, and usage of new additives that are capable of reducing the photodecomposition of PVC. This work investigates the synthesis of new levofloxacin-tin complexes and their potential exploitation against the photodecomposition of PVC. Several levofloxacin-tin complexes have been synthesized, in high yields, by a simple procedure and characterized. The potential use of the additives as photostabilizers for PVC has been investigated through the determination of weight loss, molecular weight depression, formation of fragments containing carbonyl and alkene groups, and surface morphology of irradiated PVC films. The results show that the new additives are effective in reducing the photodegradation of PVC. The new levofloxacin-tin complexes act as absorbers of ultraviolet light and quenchers of highly reactive species such as free radicals produced during photodegradation. They are more effective photostabilizers compared with organotin complexes previously reported. The complexes containing aromatic substituents were more effective than those counterparts having aliphatic residues.

Funder

King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3