Abstract
New sequences of nanocomposites including numerous maleic acid-grafted poly(butylene adipate-co-terephthalate) (g-PBAT) and cellulose nanocrystals (CNC) were efficaciously fabricated via transesterification and polycondensation processes with the covalent bonds between the polymer and reinforcing fillers. The grafting interaction of maleic acid onto PBAT was successfully demonstrated using Fourier transform infrared (FTIR) and 13C-nuclear magnetic resonance (NMR) spectra. The morphology of g-PBAT/CNC nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Both results indicate that the CNC was randomly dispersed into the g-PBAT polymer matrix. The storage modulus at −80 and 25 °C was significantly enhanced with the incorporation of CNC into g-PBAT matrix. The crystallization rate of g-PBAT/CNC nanocomposites increased as the loading of CNC increased. With the incorporation of 3 wt% CNC, the half-time for crystallization of the g-PBAT/CNC composite decreased about 50~80% as compared with the same isothermal crystallization of pure polymer matrix. All water vapor permeation (WVP) values of all g-PBAT/CNC nanocomposites decreased as the loading of CNC increased. The decrease in WVP may be attributed to the addition of stiff CNC, causing the increase on the permeation route in the water molecules in the g-PBAT polymer matrix.
Funder
Ministry of Science and Technology (MOST), Taiwan
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献