The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Composites

Author:

Cosnita Mihaela,Balas Monica,Cazan CristinaORCID

Abstract

The paper presents new value-added composite materials prepared by recycling tire rubber, polyethene terephthalate (PET), high-density polyethene (HDPE), wood sawdust, and fly ash. The composites were manufactured through the compression molding technique for three temperatures (150 °C, 160 °C, and 190 °C) previously optimized. The addition of fly ash as reinforcement in polymer blends is a viable route to improve the composite” properties. The paper aims to assess the effect of fly ash on the mechanical properties and water stability of the new all waste composites considering their applications as outdoor products. The static tensile (stress-strain behavior) and compression properties of the composites were tested. The fly ash composites were characterized in terms of wetting behavior and surface energies (contact angle measurements); chemical structure of the new interface developed between composite” components (FTIR analysis), crystalline structure (XRD analysis), surface morphology and topography (SEM, AFM). The addition of fly ash promoted the development of the hybrid interfaces in the new composites, as FTIR analysis has shown, which, in turn, greatly improved the mechanical and water resistance. The novel all waste composites exhibited lower surface energies, larger contact angles, and smoother morphologies when compared to those with no fly ash. Overall, the study results have revealed that fly ash has improved the mechanical strength and water stability of the composites through the formation of strong hybrid interfaces. The study results show optimal water stability and tensile strength for 0.5% fly ash composites cured at 190 °C and optimal compressive strength with good water stability for 1% fly ash composite cured at 150 °C.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3