Triblock Copolymer Compatibilizers for Enhancing the Mechanical Properties of a Renewable Bio-Polymer

Author:

Xue Guilian,Sun BohuaORCID,Han Lu,Liu Baichuan,Liang Hongyu,Pu Yongfeng,Tang Hongming,Ma FangwuORCID

Abstract

Poly(lactic acid) (PLA) is an emerging plastic that has insufficient properties (e.g., it is too brittle) for widespread commercial use. Previous research results have shown that the strength and toughness of basalt fiber reinforced PLA composites (PLA/BF) still need to be improved. To address this limitation, this study aimed to obtain an effective compatibilizer for PLA/BF. Melt-blending of poly(butylene adipate-co-terephthalate) (PBAT) with PLA in the presence of 4,4′-methylene diphenyl diisocyanate (MDI: 0.5 wt% of the total resin) afforded PLA/PBAT-MDI triblock copolymers. The triblock copolymers were melt-blended to improve the interfacial adhesion of PLA/BF and thus obtain excellent performance of the PLA-ternary polymers. This work presents the first investigation on the effects of PLA/PBAT-MDI triblock copolymers as compatibilizers for PLA/BF blends. The resultant mechanics, the morphology, interface, crystallinity, and thermal stability of the PLA-bio polymers were comprehensively examined via standard characterization techniques. The crystallinity of the PLA-ternary polymers was as high as 43.6%, 1.44× that of PLA/BF, and 163.5% higher than that of pure PLA. The stored energy of the PLA-ternary polymers reached 20,306.2 MPa, 5.5× than that of PLA/BF, and 18.6× of pure PLA. Moreover, the fatigue life of the PLA-ternary polymers was substantially improved, 5.85× than that of PLA/PBAT-MDI triblock copolymers. Thus, the PLA/PBAT-MDI triblock copolymers are compatibilizers that improve the mechanical properties of PLA/BF.

Funder

Jilin Province Industrial Innovation Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3