Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF

Author:

Li Shufeng,Li Xuelin,Fu Pengfei,Zhang Yao

Abstract

A novel alkali-induced grafting polymerization was designed to synthesize a PFGPA proton exchange membrane based on the co-grafting of α-methyl styrene (AMS) and acrylonitrile (AN) into the poly(vinylidenedifluoride) (PVDF) membrane. Three kinds of alkali treatments were used: by immersing the PVDF membranes into a 1 M NaOH solution and mixing the PVDF powders with 16% or 20% Na4SiO4. Then, AMS with AN could be co-grafted into the PVDF backbones in two grafting solvents, THF or IPA/water. Finally, the grafted membranes were sulfonated to provide the PFGPA membranes. In the experiments, the Na4SiO4 treatments showed a greater grafting degree than the NaOH treatment. The grafting degree increased with the increasing amount of Na4SiO4. The grafting solvent also influenced the grafting degree. A 40–50 percent grafting degree was obtained in either the THF or IPA/water solvent after the Na4SiO4 treatment and the THF resulted in a greater grafting degree. FTIR and XPS testified that the PFGPA membranes had been prepared and a partial hydrolysis of the cyano group from AN occurred. The PFGPA membranes with the grafting degree of about 40–50 percent showed a better dimensional stability in methanol, greater water uptake capabilities, and lower ion exchange capacities and conductivities than the Nafion 117 membranes. The PFGPA membrane with the 16% Na4SiO4 treatment and THF as the grafting solvent exhibited a better chemical stability. The obtained experimental results will provide a guide for the synthesis of alkali-grafted PFGPA membranes in practical use.

Funder

NATIONAL NATURAL SCIENCE FUND of CHINA

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3