Effects of Accelerated Ageing by Humidity and Heat Cycles on the Quality of Bamboo

Author:

Jia HaoORCID,Chen Lei,Fei Benhua,Sun FengboORCID,Fang ChanghuaORCID

Abstract

The effect of humidity and heat environmental conditions on the durability of conventional bamboo materials is a pressing issue in the reserving phase of biomass materials. In this study, the relationship between the main physicochemical, pyrolytic, and mechanical properties of bamboo before and after ageing has been investigated. Exposure of engineered bamboo raw materials with moisture content up to 10% to alternating humidity and heat cycles (20 °C 98% RH-30 °C 64% RH-40 °C 30% RH) of ageing (HHT) causes degradation of the chemical polymer matrix. Byk Gardner 6840 color difference meter, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), compression intensity, thermogravimetric-infrared spectroscopy (TG-IR), and density changes are used to assess the quality of the material before and after ageing. No significant changes in the moisture content within the range of 6.12 ± 0.327 after two weeks of the engineered bamboo during wet thermal cyclic ageing were determined. However, there were significant differences in mass loss (7.75–9.93 g), cellulose crystallinity, chemical changes, compression strength, and pyrolytic properties. Differences in specimen colors were observed during 10 weeks of the accelerated humidity heat cycling ageing, and TCD variations ranged from 3.75 to 20.08 and from 0.25 and 3.24, respectively. Reduced cellulose crystallinity (36.459–22.638%), axial compressive strength (63.07–88.09 MPa), and modulus of rupture (2409–4286 MPa) were found during aging, whereas deformation and ductility properties were improved. Both natural and humidity heat ageing improve thermal stability and peak pyrolysis rates (0.739–0.931; 0.731–0.797). Humidity heat cyclic ageing will assist in the design and risk assessment of warehousing environments for industrial applications.

Funder

Fundamental Research Funds of International Center for Bamboo and Rattan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3