Oxidation Behavior of Carbon Fibers in Ceramizable Phenolic Resin Matrix Composites at Elevated Temperatures

Author:

Yang Tingli,Dong Chuang,Rong Yiyang,Deng Zongyi,Li Pengfei,Han Pengkun,Shi Minxian,Huang Zhixiong

Abstract

Carbon fiber fabric-reinforced phenolic resin composites are widely used as thermal protection materials for thermal protection systems in hypersonic vehicles and capsules. In this work, carbon fiber fabric-reinforced boron phenolic resin composites modified with MoSi2 and B4C were prepared via a compression molding technique. The high-temperature performance of the composites as well as the oxidation behavior of the carbon fibers was studied. The results indicate that the incorporation of B4C improves the performance of composites at high temperatures. The residual weight rate of composites with 15 phr B4C (BP-15) sufficiently increased from 23.03% to 32.91% compared with the composites without B4C (BP-0). After being treated at 1400 °C for 15 min, the flexural strength of BP-15 increased by 17.79% compared with BP-0. Compared with BP-0, the line ablation rate and mass ablation rate of BP-15 were reduced by 53.96% and 1.56%, respectively. In addition, MoSi2 and B4C particles had a positive effect on the oxidation of carbon fibers in the composites. After treatment at 1400 °C, the diameter of the as-received carbon fiber was reduced by 31.68%, while the diameter of the carbon fiber in BP-0 and BP-15 decreased by 15.12% and 6.14%, respectively. At high temperatures, the liquid B2O3 from B4C and MoSi2-derived complex-phase ceramics (MoB, MoB2, Mo2C, Mo4.8Si3C0.6) acted as an oxygen barrier, effectively mitigating the oxidation degree of the carbon fibers.

Funder

Wuhan University of Technology Xiangyang Technology Transfer Center capital project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference48 articles.

1. PLANETARY-ENTRY GAS DYNAMICS

2. Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions;Laub;Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science,2003

3. Ceramic composites for thermal protection systems

4. Solvothermal degradation and reuse of carbon fiber reinforced boron phenolic resin composites

5. Pyrolysis behaviour of silicone-based ceramifying composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3