Construction and Evaluation of Small-Diameter Bioartificial Arteries Based on a Combined-Mold Technology

Author:

Jiao Weijie1,Liu Chen1,Shan Jingxin1,Kong Zhiyuan1,Wang Xiaohong12

Affiliation:

1. Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China

2. Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Arterial stenosis or blockage is the leading cause of cardiovascular disease, and the common solution is to substitute the arteries by autologous veins or bypass the blood vessels physically. With the development of science and technology, arteries with diameter larger than 6 mm can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene, clinically. Nevertheless, the construction of a small-diameter (less than 6 mm) artery with living cells has always been a thorny problem. In this study, a suit of combined mold was designed and forged for constructing small-diameter arterial vessels. Based on this combined mold, bioactive arterial vessels containing adipose-derived stem cells (ASCs) and different growth factors (GFs) were assembled together to mimic the inner and middle layers of the natural arteries. Before assembling, ASCs and GFs were loaded into a gelatin/alginate hydrogel. To enhance the mechanical property of the bilayer arterial vessels, polylactic–glycolic acid (PLGA) was applied on the surface of the bilayer vessels to form the outer third layer. The biocompatibility, morphology and mechanical property of the constructed triple-layer arterial vessels were characterized. The morphological results manifested that cells grow well in the gelatin/alginate hydrogels, and ASCs were differentiated into endothelial cells (ECs) and smooth muscle cells (SMCs), respectively. In addition, under the action of shear stress produced by the flow of the culture medium, cells in the hydrogels with high density were connected to each other, similar to the natural vascular endothelial tissues (i.e., endothelia). Especially, the mechanical property of the triple-layer arterial vessels can well meet the anti-stress requirements as human blood vessels. In a word, a small-diameter arterial vessel was successfully constructed through the combined mold and has a promising application prospect as a clinical small-diameter vessel graft.

Funder

Key Research & Development Project of Liaoning Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

1. Heart disease and stroke statistics-2020 Update: A Report from the American Heart Association;Virani;Circulation,2020

2. Creation of a vascular system for complex organ manufacturing;Liu;Int. J. Bioprinting,2015

3. The tissue-engineered vascular graft-past, present, and future;MacNeil;Tissue Eng. Part B Rev.,2016

4. Transplantation of a tissue-engineered pulmonary artery;Imai;N. Engl. J. Med.,2001

5. Vascular tissue engineering: Progress, challenges, and clinical promise;Song;Cell Stem Cell,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3