Abstract
In this paper, the structure and properties of transparent films composed of bisphenol-A polycarbonate (PC) and a commercially available copolyester, poly(1,4-cyclohexanedimethanol-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol-co-terephthalate) (CPE), were studied. Both PC and CPE films are known to be transparent with good mechanical toughness. It was found that PC/CPE (50/50) showed miscibility in both the molten and solid states, indicating that there is a high possibility for the blend system to be miscible in the whole blend ratios. Because of the miscibility, the blend films showed no light scattering originating from phase separation. The mechanical properties of the films, such as Young’s modulus, yield stress, and strain at break, were determined by the blend ratio, and the glass transition temperature increased with the PC content, which corresponded well with the values predicted by the Fox equation. These results demonstrate that the thermal and mechanical properties of the films can only be controlled by the blend ratio. Since these transparent films showed excellent mechanical toughness irrespective of the blend ratios, they can be employed in various applications.
Subject
Polymers and Plastics,General Chemistry
Reference56 articles.
1. Polycarbonate;Grigo,1996
2. Handbook of Polycarbonate: Science and Technology;Legrand,2000
3. Polycarbonates;Kyriacos,2017
4. Commercial Polymer Blends;Utracki,1998
5. Polycarbonate/ABS blends: A literature review
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献