Thermal Modification of Spruce and Maple Wood for Special Wood Products

Author:

Danihelová Anna,Vidholdová ZuzanaORCID,Gergeľ TomášORCID,Spišiaková Kružlicová Lucia,Pástor Michal

Abstract

This article presents a proposal of thermal modification of Norway spruce and sycamore maple for special wood products, mainly for musical instruments. Selected physical and acoustical characteristics (PACHs), including the density (ρ), dynamic modulus of elasticity along the wood grain (EL), specific modulus (Esp), speed of sound along the wood grain (cL), resonant frequency (fr) and acoustic constant (A), logarithmic decrement (ϑ), loss coefficient (η), acoustic conversion efficiency (ACE), sound quality factor (Q), and the timbre of sound, were evaluated. These two wood species were chosen regarding their use in the production or repair of musical instruments. For the thermal modification, a similar process to the ThermoWood process was chosen. Thermal modification was performed at the temperatures 135 °C, 160 °C and 185 °C. The resonant dynamic method was used to obtain the PACHs. Fast Fourier transform (FFT) was used to analyze the sound produced. The changes in the observed wood properties depended on the treatment temperature. Based on our results of all properties, the different temperature modified wood could find uses in the making of musical instruments or where the specific values of these wood characteristics are required. The mild thermal modification resulted in a decrease in mass, density, and increased speed of sound and dynamic modulus of elasticity at all temperatures of modification. The thermally modified wood showed higher sound radiation and lower loss coefficients than unmodified wood. The modification also influenced the timbre of sound of both wood species.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3