Effect of High-Temperature Hydrothermal Treatment on the Cellulose Derived from the Buxus Plant

Author:

Zhang JijuanORCID,Huo HongfeiORCID,Zhang Lei,Yang Yang,Li Hongchen,Ren Yi,Zhang Zhongfeng

Abstract

Cellulose has attracted considerable attention as the most promising potential candidate raw material for the production of bio-based polymeric materials. In the last decade, significant progress has been made in the production of biopolymers based on different cellulose forms. In this study, cellulose was obtained in an innovative and environmentally friendly way, using boxwood powder. Crude cellulose was obtained by treating Buxus powder with an ethanol–acetic acid–water mixture. Refined cellulose was then obtained by treatment with an acidic sodium hypochlorite solution and alkaline hydrogen peroxide solution. The novel chemistry of cellulose prepared by this method promises to be not only green, but also highly desirable, because of its lower emissions and low cost. It is crucial for the future of the global polymer industry. The refined cellulose was subjected to a high-temperature hydrothermal treatment under two temperatures and time conditions, with temperature gradients of 120, 140, and 160 °C, and time gradients of 1, 2, and 3 h. The samples were subjected to infrared and thermogravimetric analyses. The cellulose undergoes dehydration and thermal degradation reactions during the heat treatment process, and the thermal stability of the residual is enhanced, compared with that of virgin cellulose. Between 120 and 140 °C, the hydroxyl and hypomethyl groups on the surface of cellulose are shed. Groups in the amorphous region of the polymer are the first to be shed. The dehydration reaction reduces the number of free hydroxyl groups on the surface of the cellulose molecules. The dehydration reaction was accelerated by an increase in temperature. Between 140 and 160 °C, the β-(1,4)-glycosidic bond begins to slowly break and some furans are generated. The structure of cellulose undergoes reorganization during thermal treatment. The thermal stability of the modified material is greater than that of untreated cellulose.

Funder

Fundamental Research Funds for the Central Non-profit Research Institution of CAF

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3