Influence of Raster Pattern on Residual Stress and Part Distortion in FDM of Semi-Crystalline Polymers: A Simulation Study

Author:

Antony Samy AntoORCID,Golbang AtefehORCID,Harkin-Jones Eileen,Archer EdwardORCID,Dahale Monali,McAfee MarionORCID,Abdi Behzad,McIlhagger Alistair

Abstract

In fused deposition modelling (FDM) based on the selected raster pattern, the developed internal thermal residual stresses can vary considerably affecting the mechanical properties and leading to distinct part distortions. This phenomenon is more pronounced in semi-crystalline than amorphous polymers due to crystallisation. Hence, this study focuses on the simulation of the FDM process of a semi-crystalline polymer (polypropylene) with raster patterns such as line (90°/90°), line (0°/90°), zigzag (45°/45°), zigzag (45°/−45°), and concentric from Cura (slicing software). The simulation provides visualisation and prediction of the internally developed thermal residual stresses and resulting warpage with printing time and temperature. The sample with a line (90°/90°) raster pattern is considered as the reference sample in order to compare the relative levels of residual stress and warpage in the other printed/simulated samples. Among the considered raster patterns, the concentric pattern displays the lowest amount of warpage (5.5% decrease) along with a significant drop in residual stress of 21%. While the sample with a zigzag (45°/−45°) pattern showed the highest increase of 37% in warpage along with a decrease of 9.8% in residual stresses. The sample with a zigzag (45°/45°) pattern, exhibited a considerable increase of 16.2% in warpage with a significant increase of 31% in residual stresses. Finally, the sample with a line (0°/90°) raster pattern displayed an increase of 24% increase in warpage with an increase of 6.6% in residual stresses.

Funder

INTERREG VA

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference44 articles.

1. Analysis and Simulation of Additive Manufacturing Processes;Cattenone;Ph.D. Thesis,2018

2. Additive manufacturing methods and modelling approaches: a critical review

3. The Development and Fabrication of Particle Detectors Using Fused Deposition Modelling Techniques;Fargher;Ph.D. Thesis,2019

4. Fused deposition modeling with polypropylene

5. A Hybrid Virtual-Physical Design Methodology to Enable the Democratisation of Design for FDM;Goudswaard;Ph.D. Thesis,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3