A Molecular Dynamics Approach to the Impacts of Oxidative Aging on the Engineering Characteristics of Asphalt

Author:

Cao Wei,Fini Elham

Abstract

Oxidative aging is an inevitable environmental factor that accelerates asphalt pavement deterioration. This study employed a molecular dynamics simulation to investigate the impact of aging on asphalt cement from the perspectives of thermodynamic properties, and diffusion and adhesion characteristics. Results indicate that aging increased bulk density from 1.008 to 1.081 g/cm3 and cohesive energy density by 15.6%, which was attributed to the promoted molecular polarity and intermolecular attractiveness. The enhanced molecular interactions also reduced molecular mobility, which led to an increase in the glass transition temperature by 30 K, suggesting that aging diminished the resistance of asphalt to thermal cracking. Simulations of the diffusion behaviors across different temperatures demonstrated that the Arrhenius relationship described well the temperature dependence of the diffusion coefficient, and that aging considerably slowed down the diffusion process as represented by Arrhenius prefactor D0, which dropped by 38.2%. The asphalt–aggregate adhesion was assessed using layered models with and without a water interlayer of different thicknesses. The adhesion was enhanced upon aging due to the significantly improved electrostatic interactions at the interface. Evaluation of the residual adhesion with the presence of interfacial water suggested that aging would raise the moisture susceptibility of asphalt pavement. The increase in molecular polarity was considered to be highly responsible for these aging consequences, and was thus further investigated via the electrostatic potential surface and dipole moment.

Funder

Central South University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3