Abstract
The development of green materials, especially the preparation of high-performance conductive hydrogels from biodegradable biomass materials, is of great importance and has received worldwide attention. As an aromatic polymer found in many natural biomass resources, lignin has the advantage of being renewable, biodegradable, non-toxic, widely available, and inexpensive. The unique physicochemical properties of lignin, such as the presence of hydroxyl, carboxyl, and sulfonate groups, make it promising for use in composite conductive hydrogels. In this review, the source, structure, and reaction characteristics of industrial lignin are provided. Description of the preparation method (physical and chemical strategies) of lignin-based conductive hydrogel is elaborated along with their several important properties, such as electrical conductivity, mechanical properties, and porous structure. Furthermore, we provide insights into the latest research advances in industrial lignin conductive hydrogels, including biosensors, strain sensors, flexible energy storage devices, and other emerging applications. Finally, the prospects and challenges for the development of lignin-conductive hydrogels are presented.
Funder
The State Key Laboratory of Pulp and Paper Engineering
Subject
Polymers and Plastics,General Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献