Characterization and Optimization of Real-Time Photoresponsive Gelatin for Direct Laser Writing

Author:

Murić Branka D.,Pantelić Dejan V.,Radmilović Mihajlo D.,Savić-Šević Svetlana N.,Vasović Vesna O.

Abstract

There is an abundance of plastic materials used in the widest range of applications, such as packaging, machine parts, biomedical devices and components, etc. However, most materials used today are non-decomposable in the environment, producing a huge burden on ecosystems. The search for better, safer alternatives is still on. Here we present a detailed analysis of a simple, cheap, non-toxic, even edible, eco-friendly material, which can be easily manufactured, laser patterned and used for the fabrication of complex structures. The base substance is gelatin which is made photoresponsive by adding plasticizers and sensitizers. The resulting films were analyzed with respect to their optical, thermal and mechanical properties, which can be modified by a slight variation of chemical composition. The material is optimized for rapid laser-manufacturing of elastic microstructures (lenses, gratings, cantilevers, etc.) without any waste or residues. Overall, the material properties were tailored to increase photothermal responsivity, improve the surface quality and achieve material homogeneity, transparency and long-term stability (as verified using electron microscopy, infrared spectroscopy and differential scanning calorimetry).

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3