Spiro-Twisted Benzoxazine Derivatives Bearing Nitrile Group for All-Solid-State Polymer Electrolytes in Lithium Batteries

Author:

Lee Jen-YuORCID,Yu Tsung-Yu,Yeh Shih-Chieh,Wu Nae-Lih,Jeng Ru-JongORCID

Abstract

In this study, two nitrile-functionalized spiro-twisted benzoxazine monomers, namely 2,2′-((6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-2H,2′H-8,8′-spirobi[indeno[5,6-e][1,3]oxazin]-3,3′(4H,4′H)-diyl)bis(4,1-phenylene))diacetonitrile (TSBZBC) and 4,4′-(6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-2H,2′H-8,8′-spirobi[indeno[5,6-e][1,3]oxazin]-3,3′(4H,4′H)-diyl)dibenzonitrile (TSBZBN) were successfully developed as cross-linkable precursors. In addition, the incorporation of the nitrile group by covalent bonding onto the crosslinked spiro-twisted molecular chains improve the miscibility of SPE membranes with lithium salts while maintaining good mechanical properties. Owing to the presence of a high fractional free volume of spiro-twisted matrix, the –CN groups would have more space for rotation and vibration to assist lithium migration, especially for the benzyl cyanide-containing SPE. When combined with poly (ethylene oxide) (PEO) electrolytes, a new type of CN-containing semi-interpenetrating polymer networks for solid polymer electrolytes (SPEs) were prepared. The PEO-TSBZBC and PEO-TSBZBN composite SPEs (with 20 wt% crosslinked structure in the polymer) are denoted as the BC20 and BN20, respectively. The BC20 sample exhibited an ionic conductivity (σ) of 3.23 × 10−4 S cm−1 at 80 °C and a Li+ ion transference number of 0.187. The LiFePO4 (LFP)|BC20|Li sample exhibited a satisfactory charge–discharge capacity of 163.6 mAh g−1 at 0.1 C (with approximately 100% coulombic efficiency). Furthermore, the Li|BC20|Li cell was more stable during the Li plating/stripping process than the Li|BN20|Li and Li|PEO|Li samples. The Li|BC20|Li symmetric cell could be cycled continuously for more than 2700 h without short-circuiting. In addition, the specific capacity of the LFP|BC20|Li cell retained 87% of the original value after 50 cycles.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3