Synthesis, Characterization and In Vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast

Author:

Ullah Faqir,Shah Kifayat Ullah,Shah Shefaat UllahORCID,Nawaz AsifORCID,Nawaz TouseefORCID,Khan Kamran Ahmad,Alserihi Raed F.ORCID,Tayeb Hossam H.ORCID,Tabrez ShamsORCID,Alfatama MulhamORCID

Abstract

This study aimed to synthesise montelukast-loaded polymeric nanoparticles via the ionic gelation method using chitosan as a natural polymer and tripolyphosphate as a crosslinking agent. Tween 80, hyaluronic acid and leucine were added to modify the physicochemical properties of nanoparticles, reduce the nanoparticles’ uptake by alveolar macrophages and improve powder aerosolisation, respectively. The nanoparticles ranged from 220 nm to 383 nm with a polydispersity index of ≤0.50. The zeta potential of nanoparticles ranged from 11 mV to 22 mV, with a drug association efficiency of 46–86%. The simple chitosan nanoparticles (F2) were more spherical in comparison to other formulations (F4–F6), while the roughness of hyaluronic acid (F5) and leucine (F6) added formulations was significantly high er than F2 and Tween 80 added formulation (F4). The DSC and FTIR analysis depict that the physical and chemical properties of the drug were preserved. The release of the drugs from nanoparticles was more sustained in the case of F5 and F6 when compared to F2 and F4 due to the additional coating of hyaluronic acid and leucine. The nanoparticles were amorphous and cohesive and prone to exhalation due to their small size. Therefore, nanoparticles were admixed with lactose microspheres to reduce particle agglomeration and improve powder dispersion from a dry powder inhaler (DPI). The DPI formulations achieved a dispersed fraction of 75 to 90%, a mass median aerodynamic diameter (MMAD) of 1–2 µm and a fine particle fraction (FPF) of 28–83% when evaluated using the Anderson cascade impactor from Handihaler®. Overall, the montelukast-loaded nanoparticles physically admixed with lactose microspheres achieved optimum deposition in the deep lung for potential application in asthmatic patients.

Funder

Institutional Fund Projects

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3