Abstract
The present work seeks to determine the impact of weight percentage (wt%) of grafted starch nanocrystals (g-SNCs) on the oxygen and water vapour permeability of poly (lactic acid), PLA. Changes in the oxygen and water vapour permeability of PLA due to changes in PLA’s crystalline structures and lamellar thickness were quantified. To this end, 3, 5, and 7 wt% of g-SNC nanoparticles were blended with PLA using the solvent casting method in order to study impact of g-SNC nanoparticles on crystallization behaviour, long spacing period, melting behavior, and oxygen and water barrier properties of PLA nanocomposites. This was achieved by wide-angle X-ray diffraction (WAXD), small-angle X-ray diffraction (SAXD), differential scanning calorimetry (DSC), and oxygen and water vapour permeability machine. The results of the WAXD and SAXD analysis show that the addition of 5 wt% g-SNC in PLA induces α crystal structure at a lower crystallization time, while it significantly increases the α crystal thickness of PLA, in comparison to neat PLA. However, when g-SNC concentrations were altered (i.e., 3 or 7 wt%), the crystallization time was found to increase due to the thermodynamic barrier of crystallization. Finally, the oxygen and water vapour permeability of PLA/SNC-g-LA (5 wt%) nanocomposite film were found to be reduced by ∼70% and ~50%, respectively, when compared to the neat PLA film. This can lead to the development of PLA nanocomposites with high potential for applications in food packaging.
Subject
Polymers and Plastics,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献