Abstract
In this study, the flame retardant effect of the Zn salt of 10-hydroxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (Zn-DOPOx), melamine polyphosphate (MPP) and their mixture was investigated towards the mode of action in glass fiber-reinforced polyamide 66 (PA 66 GF). The flammability was evaluated using UL 94 V and cone calorimetry. Influence on char formation was analyzed by SEM. Thermal decomposition of Zn-DOPOx and MPP was studied by TGA and ATR-FTIR. The release of gaseous PA 66 decomposition products was investigated using TGA-DTA-FTIR. Combining Zn-DOPOx and MPP leads to an improvement in flame retardancy, most pronounced for equal parts of weight. Mode of action changes significantly for Zn-DOPOx:MPP (1:1) compared to the sole components and a strong interaction between Zn-DOPOx and MPP is revealed, resulting in a more open char structure. Fuel dilution as well as less exothermic decomposition are essential for the mode of action of the combination. Through low HRR values and high CO/CO2 ratio during cone calorimetry measurements, a significant increase in gas phase activity was proven. Therefore, it is concluded that Zn-DOPOx:MPP (1:1) leads to a significant increase in flame retardancy through a combination of mode of actions in the gas and condensed phase resulting from the change in thermal stability.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献