Seismic Performance and Engineering Application Investigation of a New Alternative Retainer

Author:

Yan Lei,Li GuoORCID,Gou Xiaoying,Zhang Ping,Wang Xinyong,Jiang Yu

Abstract

Focusing on the dilemma that the traditional lateral shear keys are ineffectual in limiting the displacement and repair of small-to-medium spanning highway bridges, this paper briefly describes the necessity of considering fiber-reinforced polymer concrete with the shear keys design, and studies the seismic performance of an alternative retainer that focuses on three functions of “limiting displacement”, “energy consumption”, and “alternative link”. In order to study the anti-seismic effectiveness under the seismic loads, four alternative retainer specimens with different sizes were designed. The quasi-static tests were carried out on four specimens, respectively. The seismic damage mode of the quasi-static alternative retainer was investigated. We examined the influence of the designed parameter of the alternative retainer on the anti-seismic effectiveness of the alternative retainer. Taking a two-span simply supported girder bridge, for example, the comparison between the seismic response of the bridge with retainers and without is analyzed based on a consideration of the sliding plate rubber bearings and the test results of the new retainers. The results show that the failure mode of the new alternative retainers is a two-stage process involving the alternative links: firstly shear failure and then the overall retainer damages, which is convenient to retrofit and reinforce post-earthquake. The thickness of the web of the alternative link, as a sensitive factor, influences the bearing capacity of the new retainers, yield displacement, ultimate displacement, ductility coefficient and overall energy consumption. The height of the alternative link will merely influence the ultimate bearing capacity, and transverse replacement of the main girder with the new alternative retainers is greatly reduced compared to without retainers, and the seismic response increase in the pier is gentle.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference23 articles.

1. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations

2. Seismic Performance of Sacrificial Exterior Shear Keys in Bridge Abutments

3. Shear Behavior of Exterior Non-Isolated Shear Keys in Bridge Abutments;Kottari;ACI Struct. J.,2020

4. Experiment on Seismic Performance and Its Improvement of Reinfored Concrete Retainers;Xu;China J. Highw. Transp.,2014

5. Seismic Capacity Evaluation of Interior Shear Keys for Highway Bridges

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3