Freestanding Activated Carbon Nanocomposite Electrodes for Capacitive Deionization of Water

Author:

Hussain Humair,Jilani AsimORCID,Salah NumanORCID,Alshahrie Ahmed,Memić AdnanORCID,Ansari Mohammad OmaishORCID,Dutta JoydeepORCID

Abstract

Freshwater reserves are being polluted every day due to the industrial revolution. Man-made activities have adverse effects upon the ecosystem. It is thus the hour of need to explore newer technologies to save and purify water for the growing human population. Capacitive deionization (CDI) is being considered as an emerging technique for removal of excess ions to produce potable water including desalination. Herein, cost-effective activated carbon incorporated with carbon nanotubes (CNT) was used as a freestanding electrode. Further, the desalination efficiency of the designed electrodes was tuned by varying binder concentration, i.e., polyvinylidene difluoride (PVDF) in the activated carbon powder and CNT mixture. PVDF concentration of 5, 7.5, 10, and 12.5 wt% was selected to optimize the freestanding electrode formation and further applied for desalination of water. PVDF content affected the surface morphology, specific surface area, and functional groups of the freestanding electrodes. Moreover, the electrical conductivity and specific surface area changed with PVDF concentration, which ultimately affected the desalination capacity using the freestanding electrodes. This study paves the way to produce cost effective carbon-based freestanding electrodes for capacitive deionization and other applications including battery electrodes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3