Novel Hybrid Nanomaterials Based on Poly-N-Phenylanthranilic Acid and Magnetic Nanoparticles with Enhanced Saturation Magnetization

Author:

Ozkan Sveta ZhiraslanovnaORCID,Kostev Aleksandr Ivanovich,Chernavskii Petr Aleksandrovich,Karpacheva Galina PetrovnaORCID

Abstract

A one-step preparation method for cobalt- and iron-containing nanomaterials based on poly-N-phenylanthranilic acid (P-N-PAA) and magnetic nanoparticles (MNP) was developed for the first time. To synthesize the MNP/P-N-PAA nanocomposites, the precursor is obtained by dissolving a Co (II) salt in a magnetic fluid based on Fe3O4/P-N-PAA with a core-shell structure. During IR heating of the precursor in an inert atmosphere at T = 700–800 °C, cobalt interacts with Fe3O4 reduction products, which results in the formation of a mixture of spherical Co-Fe, γ-Fe, β-Co and Fe3C nanoparticles of various sizes in the ranges of 20 < d < 50 nm and 120 < d < 400 nm. The phase composition of the MNP/P-N-PAA nanocomposites depends significantly on the cobalt concentration. The reduction of metals occurs due to the hydrogen released during the dehydrogenation of phenylenamine units of the polymer chain. The introduction of 10–30 wt% cobalt in the composition of nanocomposites leads to a significant increase in the saturation magnetization of MNP/P-N-PAA (MS = 81.58–149.67 emu/g) compared to neat Fe3O4/P-N-PAA (MS = 18.41–27.58 emu/g). The squareness constant of the hysteresis loop is κS = MR/MS = 0.040–0.209. The electrical conductivity of the MNP/P-N-PAA nanomaterials does not depend much on frequency and reaches 1.2 × 10−1 S/cm. In the argon flow at 1000 °C, the residue is 77–88%.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3