Abstract
Acrylamide-methacrylic acid copolymer named P (AM-co-MAA) was synthesized via aqueous solution polymerization, and then mixed with crosslinker, flame retardants and initiators to prepare multifunctional transparent flame-retarded hydrogels with transparency, fire resistance and anti-ageing property. The results show that the application of multifunctional transparent flame-retarded hydrogel imparts high level of transparency and excellent fire resistance to the fire-resistant glass, and the light transmittance and fire resistance of the flame-retarded hydrogel increases with the increasing mass ratio of AM to MAA in P(AM-co-MAA). When the mass ratio of AM to MAA is 4:1, the obtained P(AM-co-MAA) imparts the lowest backside temperature of 130 °C at 3600 s and highest light transmittance of 86.1% to the transparent flame-retarded hydrogel. TG and DSC analysis show that the addition of P(AM-co-MAA) increases the thermal stability of the transparent flame-retarded hydrogels due to the formation of numerous hydrogen bonds via the complexation between amide and carboxyl groups. Accelerated ageing test indicates that the transparent flame-retarded hydrogel containing P(AM-co-MAA) exerts durable fire resistance and transparency, and the ageing resistance of the transparent flame-retarded hydrogel depends on the mass ratio of AM to MAA in P(AM-co-MAA). Therefore, this study provides a promising strategy to prepare a novel multifunctional transparent flame-retarded hydrogel with excellent light transmittance, fire resistance and anti-ageing properties.
Funder
National Natural Science Foundation of China
The Graduate Research and Innovation Project of Central South University
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献