Durability of CFRP–Steel Double–Lap Joints under Cyclic Freeze–Thaw/Wet–Dry Conditions

Author:

Ren Xiang,Jiang Lingzhi,He Jun,Yang Yi,Sun Yamin,Liu Qunfeng,Chen Shaojie

Abstract

The usage of carbon fiber–reinforced polymer (CFRP) to strengthen cracked steel structures can effectively improve its bear capacity, so it has been extensively used in recent years. The degradation of interfacial bonding is one of the most important factors affecting the durability of CFRP–steel structures under a freeze–thaw(F–T)/wet–dry (W–D) environment. In this study, epoxy resin adhesive (ERA) dog-bone specimens and CFRP–steel double-lap joints (bonded joints) were prepared. F–T/W–D cycles experiment and tensile tests of the ERA specimens and the bonded joints were also performed. Under F–T/W–D cycles, the main properties of the ERA specimens and the bonded joints were examined. Results indicated that fracture failure occurred in all ERA specimens. The hybrid failure modes of fiber peeling on the surface of CFRP plate and the bonded interface peeling between the CFRP plate and ERA layer primarily occurred in the bonded joints. The failure of both of them can be considered to be brittle, which was unaffected by the F–T/W–D cycles. With increased F–T/W–D cycles, the ultimate load and tensile strength of the ERA specimens initially increased and then decreased, whereas the elastic modulus initially increased and then remained unchanged. The ultimate load of the bonded joints decreased gradually. Based on the relationship between the interfacial bond-slip parameters and the number of F–T/W–D cycles, the bond–slip model of the bonded joints was established. The proposed relationship was validated by comparing with the experimental bond-slip relationships and the predicted relationships under the F–T/W–D cycles.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference53 articles.

1. State-of-the-Art Review of Fatigue of Steel Bridge in 2019;Zhang;J. Civ. Environ. Eng.,2020

2. Edition of China of Highway and Transport. Review on China’s Bridge Engineering Research: 2021;Ma;China J. Highw. Transp.,2021

3. Progress in the Research of Steel Structures Strengthened with CFRP

4. The Technology and Research of Steel Structure Strengthened with CFRP;Cheng;FRP/CM,2013

5. The Analysis of Parametric and Reinforcement Coefficient about H-Section Steel Beams Reinforced by Prestressed CFRP Plates;Dong;FRP/CM,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3