Study of Blast Mitigation Performance and Fracture Mechanism of Polyurea under Contact Explosion

Author:

Huang Weibo,Zhang RuiORCID,Wang Xu,Lyu Ping,Ju Jiahui,Gao Fuyin,Yan Shuai

Abstract

In order to further study the blast mitigation performance of polyurea and to investigate the protection mechanism and damage characteristics of polyurea-protected structures under contact explosion loads, based on earlier work, this paper investigated the response and energy absorption performance of polyurea under various frequency loads. Qtech T26 blast mitigation polyurea (T26 polyurea) was adopted to protect the reinforced concrete (RC) slab and damage analysis of the post-explosion specimens was carried out at micro and macro levels. The response and energy absorption capacity of the material towards different frequency loads were investigated by dynamic mechanical analysis (DMA). Protective performance of T26 polyurea on RC slab was examined with a 10 kg TNT contact explosion test. Scanning electron microscopy (SEM) was employed to analyze the microscopic fracture morphology of the typical areas of the coating after the explosion. The chemical structure changes of the blast-face coating before and after the explosion were compared by Fourier transform infrared spectroscopy (FTIR). The results show that the glass transition region of T26 polyurea is −40 °C to 10 °C, which is a large temperature range, and the microphase separation of T26 polyurea is low. It is significantly influenced by the ambient temperature and loading frequency. The energy absorption of T26 polyurea is realized through the interaction between the hard and soft segments. When the frequency is between 102 Hz and 106 Hz, the loss factor of T26 polyurea is between 0.20 and 0.31, which exhibits a good energy dissipation performance. In the contact explosion of 10 kg TNT, the fragmentation rate of the coated specimen decreased significantly compared with that of the unprotected specimen, realizing the zero fragmentation protection effect on the back-blast face. The maximum deformation area and the main energy absorption area of T26 polyurea under contact explosion is the ring area outside the longitudinal deformation area. The chemical structure of T26 polyurea changed significantly after the explosion; typically the N-H bonds, etc., were broken and the percentage of hydrogen bonding was reduced. T26 polyurea has realized the protection effect of zero fragmentation of large-equivalent contact explosion, which has a high application value for blast mitigation and blast-fragmentation prevention in actual engineering.

Funder

This research was funded by Study on High Performance Polyurea and Its Composites

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3