The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States

Author:

Fang MingORCID,Wei Wenjuan,Li Ruoxin,Mao Liucheng,Wang Yuanheng,Guan Yan,Chen QiangORCID,Shuai Zhigang,Wei Yen

Abstract

The study of aggregation-induced emission luminogens (AIEgens) shows promising perspectives explored in lighting, optical sensors, and biological therapies. Due to their unique feature of intense emissions in aggregated solid states, it smoothly circumvents the weaknesses in fluorescent dyes, which include aggregation-caused quenching of emission and poor photobleaching character. However, our present knowledge of the AIE phenomena still cannot comprehensively explain the mechanism behind the substantially enhanced emission in their aggregated solid states. Herein, to systematically study the mechanism, the typical AIEgens tetraphenylethene (TPE) was chosen, to elucidate its photophysical properties, the TPE in THF/H2O binary solvents, TPE in THF solvents depending on concentration, and the following direct conversion from a dissolved state to a precipitated solid state were analyzed. Moreover, the TPE derivatives were also investigated to supply more evidence to better decipher the generally optical behaviors of TPE and its derivatives. For instance, the TPE derivative was homogeneously dispersed into tetraethyl orthosilicate to monitor the variance of photophysical properties during sol–gel processing. Consequently, TPE and its derivatives are hypothesized to abide by the anti-Kasha rule in dissolved states. In addition, the factors primarily influencing the nonlinear emission shifting of TPE and its derivatives are also discussed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3