Scalability and Performance of LiDAR Point Cloud Data Management Systems: A State-of-the-Art Review

Author:

Lokugam Hewage Chamin Nalinda,Laefer Debra F.,Vo Anh-VuORCID,Le-Khac Nhien-An,Bertolotto MichelaORCID

Abstract

Current state-of-the-art point cloud data management (PCDM) systems rely on a variety of parallel architectures and diverse data models. The main objective of these implementations is achieving higher scalability without compromising performance. This paper reviews the scalability and performance of state-of-the-art PCDM systems with respect to both parallel architectures and data models. More specifically, in terms of parallel architectures, shared-memory architecture, shared-disk architecture, and shared-nothing architecture are considered. In terms of data models, relational models, and novel data models (such as wide-column models) are considered. New structured query language (NewSQL) models are considered. The impacts of parallel architectures and data models are discussed with respect to theoretical perspectives and in the context of existing PCDM implementations. Based on the review, a methodical approach for the selection of parallel architectures and data models for highly scalable and performance-efficient PCDM system development is proposed. Finally, notable research gaps in the PCDM literature are presented as possible directions for future research.

Funder

Science Foundation Ireland

National Science Foundation

Northern Ireland Trust

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3