Quantitative Inversion of Lunar Surface Chemistry Based on Hyperspectral Feature Bands and Extremely Randomized Trees Algorithm

Author:

Wu Shuangshuang,Chen Jianping,Li Li,Zhang Cheng,Huang Rujin,Zhang Quanping

Abstract

In situ resource utilization (ISRU) is required for the operation of both medium and long-term exploration missions to provide metallic materials for the construction of lunar base infrastructure and H2O and O2 for life support. The study of the distribution of the lunar surface elements (Fe, Ti, Al, and Si) is the basis for the in situ utilization of mineral resources. With the arrival of the era of big data, the application of big data concepts and technical methods to lunar surface chemistry inversion has become an inevitable trend. This paper is guided by big data theory, and the Apollo 17 region and the area near the Copernicus crater are selected for analysis. The dimensionality of the first-order differential spectral features of lunar soil samples is reduced based on Pearson correlation analysis and the successive projections algorithm (SPA), and the extremely randomized trees (Extra-Trees) algorithm is applied to Chang’E-1 Interference Imaging Spectrometer (IIM) data to establish a prediction model for the lunar surface chemistry and generate FeO, TiO2, Al2O3, and SiO2 distribution maps. The results show that the optimum number of variables for FeO, TiO2, Al2O3, and SiO2 is 17, 5, 8, and 30, respectively. The accuracy of the Extra-Trees model using the best variables was improved over that of the original band model, with determination coefficients (R2) of 0.962, 0.944, 0.964, and 0.860 for FeO, TiO2, Al2O3, and SiO2, and root mean square errors (RMSEs) of 1.028, 0.672, 0.942, and 0.897, respectively. The modeling feature variables and model preference methods in this study can improve the inversion accuracy of chemical abundance to some extent, demonstrating the potential of IIM data in predicting chemical abundance and providing a good data basis for lunar geological evolution studies and ISRU.

Funder

China Geological Survey

Natural science basis research plan in Shaanxi province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3