Genetic Algorithm Captured the Informative Bands for Partial Least Squares Regression Better on Retrieving Leaf Nitrogen from Hyperspectral Reflectance

Author:

Jin JiaORCID,Wu Mengjuan,Song Guangman,Wang Quan

Abstract

Nitrogen is a major nutrient regulating the physiological processes of plants. Although various partial least squares regression (PLSR) models have been proposed to estimate the leaf nitrogen content (LNC) from hyperspectral data with good accuracies, they are unfortunately not robust and are often not applicable to novel datasets beyond which they were developed. Selecting informative bands has been reported to be critical to refining the performance of the PLSR model and improving its robustness for general applications. However, no consensus on the optimal band selection method has yet been reached because the calibration and validation datasets are very often limited to a few species with small sample sizes. In this study, we address the question based on a relatively comprehensive joint dataset, including a simulation dataset generated from the recently developed leaf scale radiative transfer model (PROSPECT-PRO) and two public online datasets, for assessing different informative band selection techniques on the informative band selection. The results revealed that the goodness-of-fit of PLSR models to estimate LNC could be greatly improved by coupling appropriate band-selection methods rather than using full bands instead. The PLSR models calibrated from the simulation dataset with informative bands selected by genetic algorithm (GA) and uninformative variable elimination (UVE) method were reliable for retrieving the LNC of the two independent field-measured datasets as well. Particularly, GA was more effective to capture the informative bands for retrieving LNC from hyperspectral data. These findings should provide valuable insights for building robust PLSR models for retrieving LNC from hyperspectral remote sensing data.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3