Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products

Author:

Alparone MatteoORCID,Nunziata FerdinandoORCID,Estatico ClaudioORCID,Migliaccio Maurizio

Abstract

In this study, the enhancement of the spatial resolution of microwave radiometer measurements is addressed by contrasting the accuracy of a gradient-like antenna pattern deconvolution method with its accelerated versions. The latter are methods that allow reaching a given accuracy with a reduced number of iterations. The analysis points out that accelerated methods result in improved performance when dealing with spot-like discontinuities; while they perform in a similar way to the canonical gradient method in case of large discontinuities. A key application of such techniques is the research on global warming and climate change, which has recently gained critical importance in many scientific fields, mainly due to the huge societal and economic impact of such topics over the entire planet. In this context, the availability of reliable long time series of remotely sensed Earth data is of paramount importance to identify and study climate trends. Such data can be obtained by large-scale sensors, with the obvious drawback of a poor spatial resolution that strongly limits their applicability in regional studies. Iterative gradient techniques allow obtaining super-resolution gridded passive microwave products that can be used in long time series of consistently calibrated brightness temperature maps in support of climate studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3