Abstract
As an outstanding method for ocean monitoring, synthetic aperture radar (SAR) has received much attention from scholars in recent years. With the rapid advances in the field of SAR technology and image processing, significant progress has also been made in ship detection in SAR images. When dealing with large-scale ships on a wide sea surface, most existing algorithms can achieve great detection results. However, small ships in SAR images contain little feature information. It is difficult to differentiate them from the background clutter, and there is the problem of a low detection rate and high false alarms. To improve the detection accuracy for small ships, we propose an efficient ship detection model based on YOLOX, named YOLO-Ship Detection (YOLO-SD). First, Multi-Scale Convolution (MSC) is proposed to fuse feature information at different scales so as to resolve the problem of unbalanced semantic information in the lower layer and improve the ability of feature extraction. Further, the Feature Transformer Module (FTM) is designed to capture global features and link them to the context for the purpose of optimizing high-layer semantic information and ultimately achieving excellent detection performance. A large number of experiments on the HRSID and LS-SSDD-v1.0 datasets show that YOLO-SD achieves a better detection performance than the baseline YOLOX. Compared with other excellent object detection models, YOLO-SD still has an edge in terms of overall performance.
Funder
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献