Optimization of the Ecological Network Structure Based on Scenario Simulation and Trade-Offs/Synergies among Ecosystem Services in Nanping

Author:

Wang Zixuan,Xiao Ling,Yan HaimingORCID,Qi Yuanjing,Jiang Qun’ou

Abstract

The optimization of the ecological network structure in Nanping can provide a scientific reference for guaranteeing ecological safety in Southeast China. This study estimated ecosystem services in Nanping with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model based on land-use data from 2020 to 2025 simulated with the CLUE-S model under the natural development scenario and ecological protection scenario and then explored their trade-offs and synergies. The ecological network structure was, thereafter, optimized in terms of the eco-matrix, eco-corridors and nodes based on simulated land use and ecosystem services. The results suggested that the average habitat quality and total soil retention increased, while the average degradation index and total water yield decreased under the ecological protection scenario, indicating that the ecological environment quality tended to be improved. In addition, soil retention had significant synergies with habitat quality and water yield, and habitat quality had significant trade-offs with ecological degradation and water yield on the regional scale under two scenarios, while ecological degradation also showed significant trade-offs with soil retention and water yield. In addition, the results suggested that 11 additional ecological sources could be added, and the number of eco-corridors increased from 15 to 136; a total of 1019 ecological break points were restored, and 1481 stepping stone patches were deployed, which jointly made network circuitry, edge/node ratio and network connectivity reach 0.45, 1.86 and 0.64, respectively, indicating that optimization could effectively improve the structure and connectivity of the ecological network. These findings can provide a theoretical basis for improving the ecological network structure and ecological service functions in Nanping and other regions.

Funder

Major Research Plan of National Natural Science Foundation of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3