Development of a Modality-Invariant Multi-Layer Perceptron to Predict Operational Events in Motor-Manual Willow Felling Operations

Author:

Borz Stelian AlexandruORCID

Abstract

Motor-manual operations are commonly implemented in the traditional and short rotation forestry. Deep knowledge of their performance is needed for various strategic, tactical and operational decisions that rely on large amounts of data. To overcome the limitations of traditional analytical methods, Artificial Intelligence (AI) has been lately used to deal with various types of signals and problems to be solved. However, the reliability of AI models depends largely on the quality of the signals and on the sensing modalities used. Multimodal sensing was found to be suitable in developing AI models able to learn time and location-related data dependencies. For many reasons, such as the uncertainty of preserving the sensing location and the inter- and intra-variability of operational conditions and work behavior, the approach is particularly useful for monitoring motor-manual operations. The main aim of this study was to check if the use of acceleration data sensed at two locations on a brush cutter could provide a robust AI model characterized by invariance to data sensing location. As such, a Multi-Layer Perceptron (MLP) with backpropagation was developed and used to learn and classify operational events from bimodally-collected acceleration data. The data needed for training and testing was collected in the central part of Romania. Data collection modalities were treated by fusion in the training dataset, then four single-modality testing datasets were used to check the performance of the model on a binary classification problem. Fine tuning of the regularization parameters (α term) has led to acceptable testing and generalization errors of the model measured as the binary cross-entropy (log loss). Irrespective of the hyperparameters’ tunning strategy, the classification accuracy (CA) was found to be very high, in many cases approaching 100%. However, the best models were those characterized by α set at 0.0001 and 0.1, for which the CA in the test datasets ranged from 99.1% to 99.9% and from 99.5% to 99.9%, respectively. Hence, data fusion in the training set was found to be a good strategy to build a robust model, able to deal with data collected by single modalities. As such, the developed MLP model not only removes the problem of sensor placement in such applications, but also automatically classifies the events in the time domain, enabling the integration of data collection, handling and analysis in a simple less resource-demanding workflow, and making it a feasible alternative to the traditional approach to the problem.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3