A New Methodology for the Detection and Extraction of Hyperbolas in GPR Images

Author:

Onyszko KlaudiaORCID,Fryśkowska-Skibniewska AnnaORCID

Abstract

Reliable detection of underground infrastructure is essential for infrastructure modernization works, the implementation of BIM technology, and 3D cadasters. This requires shortening the time of data interpretation and the automation of the stage of selecting the objects. The main factor that influences the quality of radargrams is noise. The paper presents the method of data filtration with use of wavelet analyses and Gabor filtration. The authors were inspired to conduct the research by the fact that the interpretation and analysis of radargrams is time-consuming and by the wish to improve the accuracy of selection of the true objects by inexperienced operators. The authors proposed automated methods for the detection and classification of hyperboles in GPR images, which include the data filtration, detection, and classification of objects. The proposed object classification methodology based on the analytic hierarchy process method introduces a classification coefficient that takes into account the weights of the proposed conditions and weights of the coefficients. The effectiveness and quality of detection and classification of objects in radargrams were assessed. The proposed methods make it possible to shorten the time of the detection of objects. The developed hyperbola classification coefficients show promising results of the detection and classification of objects.

Funder

Military University of Technology, Faculty of Civil Engineering and Geodesy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. End-to-end deep learning model for underground utilities localization using GPR;Automation in Construction;2023-05

2. Intensity Normalisation of GPR C-Scans;Remote Sensing;2023-02-27

3. Deep learning for Ground Penetration Radar Reflection Images in Civil Structures Investigation;2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES);2022-11-24

4. Processing Radargrams to Obtain Resistivity Sections;Remote Sensing;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3