Landsat-Derived Annual Maps of Agricultural Greenhouse in Shandong Province, China from 1989 to 2018

Author:

Ou CongORCID,Yang Jianyu,Du ZhenrongORCID,Zhang Tingting,Niu Bowen,Feng Quanlong,Liu Yiming,Zhu Dehai

Abstract

Agricultural greenhouse (AG), one of the fastest-growing technology-based approaches worldwide in terms of controlling the environmental conditions of crops, plays an essential role in food production, resource conservation and the rural economy, but has also caused environmental and socio-economic problems due to policy promotion and market demand. Therefore, long-term monitoring of AG is of utmost importance for the sustainable management of protected agriculture, and previous efforts have verified the effectiveness of remote sensing-based techniques for mono-temporal AG mapping in a relatively small area. However, currently, a continuous annual AG remote sensing-based dataset at large-scale is generally unavailable. In this study, an annual AG mapping method oriented to the provincial area and long-term period was developed to produce the first Landsat-derived annual AG dataset in Shandong province, China from 1989 to 2018 on the Google Earth Engine (GEE) platform. The mapping window for each year was selected based on the vegetation growth and the phenological information, which was critical in distinguishing AG from other misclassified categories. Classification for each year was carried out initially based on the random forest classifier after the feature optimization. A temporal consistency correction algorithm based on classification probability was then proposed to the classified AG maps for further improvement. Finally, the average User’s Accuracy, Producer’s Accuracy and F1-score of AG based on visually-interpreted samples over 30 years reached 96.56%, 86.64% and 0.911, respectively. Furthermore, we also found that the ranked features via calculating the importance of each tested feature resulted in the highest accuracy and the strongest stability in the initial classification stage, and the proposed temporal consistency correction algorithm improved the final products by approximately five percent on average. In general, the resultant AG sequence dataset from our study has revealed the expansion of this typical object of “Human–Nature” interaction in agriculture and has a potential application in use of greenhouse-related technology and the scientific planning of protected agriculture.

Funder

Ministry of land and resources industry public welfare projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3