Cross-Comparison of Global Surface Albedo Operational Products-MODIS, GLASS, and CGLS

Author:

Shao Congying,Shuai Yanmin,Tuerhanjiang Latipa,Ma XuexiORCID,Hu Weijie,Zhang Qingling,Xu Aigong,Liu Tao,Tian Yuhang,Wang Chongyang,Ma Yu

Abstract

Surface albedo, as an important parameter for land surface geo-biophysical and geo-biochemical processes, has been widely used in the research communities involved in surface energy balance, weather forecasting, atmospheric circulation, and land surface process models. In recent years, operational products using satellite-based surface albedo have, from time to time, been rapidly developed, contributing significantly to the estimation of energy balance at regional or global scales. The increasing number of research topics on dynamic monitoring at a decades-long scale requires a combination of albedo products generated from various sensors or programs, while the quantitative assessment of agreement or divergence among different surface albedo products still needs further understanding. In this paper, we investigated the consistency of three classical operational surface albedo products that have been frequently used by researchers globally via the official issued datasets-MODIS, GLASS (Global LAnd Surface Satellite), and CGLS (Copernicus Global Land Service). The cross-comparison was performed on all the identical dates available during 2000–2017 to represent four season-phases. We investigated the pixel-based validity of each product, consistency of global annual mean, spatial distribution and different temporal dynamics among the discussed products in white-sky (WSA) and black-sky (BSA) albedo at visible (VIS), near-infrared (NIR), and shortwave (SW) regimes. Further, varying features along with the change of seasons was also examined. In addition, the variation in accuracy of shortwave albedo magnitude was explored using ground measurements collected by the Baseline Surface Radiation Network (BSRN) and the Surface Radiation Budget Network (SUFRAD). Results show that: (1) All three products can provide valid long-term albedo for dominant land surface, while GLASS can provide additional estimation over sea surfaces, with the highest percentage of valid land surface pixels, at up to 93% in 24 October. The invalid pixels mainly existed in the 50°N–60°N latitude belt in December for GLASS, Central Africa in April and August for MODIS, and northern high latitudes for CGLS. (2) The global mean albedo of CGLS at the investigated bands has significantly higher values than those of MODIS and GLASS, with a relative difference of ~20% among the three products. The global mean albedo of MODIS and GLASS show a generally increasing trend from April to December, with an abrupt rise at NIR and SW of CGLS in June of 2014. Compared with SW and VIS bands, the linear temporal trend of the NIR global albedo mean in three products continues to increase, but the slope of CGLS is 10–100 times greater than that of the other two products. (3) The differences in albedo, which are higher in April, October, and December than in August, exhibit a small variation over the main global land surface regions, except for Central Eurasia, North Africa, and middle North America. The magnitude of global absolute difference among the three products usually varies within 0.02–0.06, but with the largest value occasionally exceeding 0.1. The relative difference is mainly within 10–20%, and can deviate more than 40% away from the baseline. In addition, CGLS has a greater opportunity to achieve the largest difference compared with MODIS and GLASS. (4) The comparison with ground measurements indicates that MODIS generally performs better than GLASS and CGLS at the sites discussed. This study demonstrates that apparent differences exist among the three investigated albedo products due to the ingested source data, algorithm, atmosphere correction etc., and also points at caution regarding data fusion when multiple albedo products were organized to serve the following applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Liaoning Revitalization Talents Program

CAS “BR”

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3