Author:
Liu Jinming,Chen Hao,Wang Yu
Abstract
The active recognition of interesting targets has been a vital issue for remote sensing. In this paper, a novel multi-source fusion method for ship target detection and recognition is proposed. By introducing synthetic aperture radar (SAR) sensor images, the proposed method solves the problem of precision degradation in optical remote sensing image target detection and recognition caused by the limit of illumination and weather conditions. The proposed method obtains port slice images containing ship targets by fusing optical data with SAR data. On this basis, spectral residual saliency and region growth method are used to detect ship targets in optical image, while SAR data are introduced to improve the accuracy of ship detection based on joint shape analysis and multi-feature classification. Finally, feature point matching, contour extraction and brightness saliency are used to detect the ship parts, and the ship target types are identified according to the voting results of part information. The proposed ship detection method obtained 91.43% recognition accuracy. The results showed that this paper provides an effective and efficient ship target detection and recognition method based on multi-source remote sensing images fusion.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference36 articles.
1. Unsupervised Amplitude and Texture Classification of SAR Images With Multinomial Latent Model
2. Geo—Computing of High Resolution Satellite Remote Sensing Images;Zhou,2009
3. High resolution radar real—Time signal and information processing;Long;China Commun.,2019
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献