A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space

Author:

Zhang JieyunORCID,Zhang Qingling,Bao Anming,Wang Yujuan

Abstract

Soil moisture, as a crucial indicator of dryness, is an important research topic for dryness monitoring. In this study, we propose a new remote sensing dryness index for measuring soil moisture from spectral space. We first established a spectral space with remote sensing reflectance data at the near-infrared (NIR) and red (R) bands. Considering the distribution regularities of soil moisture in this space, we formulated the Ratio Dryness Monitoring Index (RDMI) as a new dryness monitoring indicator. We compared RDMI values with in situ soil moisture content data measured at 0–10 cm depth. Results showed that there was a strong negative correlation (R = −0.89) between the RDMI values and in situ soil moisture content. We further compared RDMI with existing remote sensing dryness indices, and the results demonstrated the advantages of the RDMI. We applied the RDMI to the Landsat-8 imagery to map dryness distribution around the Fukang area on the Northern slope of the Tianshan Mountains, and to the MODIS imagery to detect the spatial and temporal changes in dryness for the entire Xinjiang in 2013 and 2014. Overall, the RDMI index constructed, based on the NIR–Red spectral space, is simple to calculate, easy to understand, and can be applied to dryness monitoring at different scales.

Funder

Ministry of Science and Technology of the People's Republic of China

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference81 articles.

1. Drought as a natural hazard: Concepts and definitions;Wilhite;Drought A Glob. Assess.,2000

2. A review of drought concepts

3. Vegetation dynamics and responses to climate change and human activities in Central Asia

4. Climate Change and Water;Makundi,2008

5. Risk assessment to China’s agricultural drought disaster in county unit

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3