Influence of Land Use and Land Cover Change on the Formation of Local Lightning

Author:

Kar Sanjib,Liou Yuei-AnORCID

Abstract

Land use and land cover (LULC) play a crucial role in the interaction between the land and atmosphere, influencing climate at local, regional, and global scales. LULC change due to urbanization has significant impacts on local weather and climate. Land-cover changes associated with urbanization create higher air temperatures compared to the surrounding rural area, known as the “urban heat island (UHI)” effect. Urban landscapes also affect formation of convective storms. In recent years, the effect of urbanization on local convections and lightning has been studied very extensively. In this paper a long-term study has been carried out taking cloud-to-ground (CG) lightning data (1998–2012) from Tai-Power Company, and particulate matter (PM10), sulfur dioxide (SO2) data (2003–2012) from the Environmental Protection Administration (EPA) of Taiwan, in order to investigate the influence of LULC change through urbanization on CG lightning activity over Taipei taking into account in situ data of population growth, land use change and mean surface temperature (1965–2010). The thermal band of the Land-Sat 7 satellite was used to generate the apparent surface temperature of New Taipei City. It was observed that an enhancement of 60–70% in the flash density over the urban areas compared to their surroundings. The spatial distribution of the CG lightning flashes follows closely the shape of the Taipei city heat island, thereby supporting the thermal hypothesis. The PM10 and SO2 concentrations showed a positive linear correlation with the number of cloud-to-ground flashes, supporting the aerosol hypothesis. These results indicate that both hypotheses should be considered to explain the CG lightning enhancements over the urban areas. The results obtained are significant and interesting and have been explained from the thermodynamic point of view.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3