Abstract
Interferometric synthetic aperture radar (InSAR) data from 6 Envisat ASAR descending tracks; spanning the 2003–2010 period; was used to measure interseismic strain accumulation across the Northeastern Tibetan Plateau. Mean line-of-sight (LOS) ratemaps are computed by stacking atmospheric-corrected and orbital-corrected interferograms. The ratemaps from one track with different atmospheric-corrected results or two parallel; partially overlapping tracks; show a consistent pattern of left-lateral motion across the fault; which demonstrates the MERIS and ECMWF atmospheric correction works satisfactorily for small stain measurement of this region; even with a limited number of interferograms. By combining the measurements of InSAR and GPS; a fine crustal deformation velocity and strain rate field was estimated on discrete points with irregular density depending on the fault location; which revealed that the present-day slip rate on the Haiyuan fault system varies little from west to east. A change (2–3 mm/year) in line-of-sight (LOS) deformation rate across the fault is observed from the Jinqianghe segment to its eastern end. Inversion from the cross-fault InSAR profiles gave a shallow locking depth of 3–6 km on the main rupture of the 1920 earthquake. We therefore infer that the middle-lower part of the seismogenic layer on the 1920 rupture is not yet fully locked since the 1920 large earthquake. Benefit from high spatial resolution InSAR data; a low strain accumulation zone with high strain rates on its two ends was detected; which corresponds to the creeping segment; i.e., the Laohushan fault segment. Contrary to the previous knowledge of squeezing structure; an abnormal tension zone is disclosed from the direction map of principal stress; which is consistent with the recent geological study. The distribution of principal stress also showed that the expanding frontier of the northeastern plateau has crossed the Liupan Shan fault zone; even arrived at the northeast area of the Xiaoguan Shan. This result agrees with the deep seismic reflection profile.
Subject
General Earth and Planetary Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献