Abstract
In this paper, a system-specific phased-array radar system simulator was developed, based on a time-domain modeling and simulation method, mainly for system performance evaluation of the future Spectrum-Efficient National Surveillance Radar (SENSR). The goal of the simulation study was to establish a complete data quality prediction method based on specific radar hardware and electronics designs. The distributed weather targets were modeled using a covariance matrix-based method. The data quality analysis was conducted using Next-Generation Radar (NEXRAD) Level-II data as a basis, in which the impact of various pulse compression waveforms and channel electronic instability on weather radar data quality was evaluated. Two typical weather scenarios were employed to assess the simulator’s performance, including a tornado case and a convective precipitation case. Also, modeling of some demonstration systems was evaluated, including a generic weather radar, a planar polarimetric phased-array radar, and a cylindrical polarimetric phased-array radar. Corresponding error statistics were provided to help multifunction phased-array radar (MPAR) designers perform trade-off studies.
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献