Radar Interferometry Time Series to Investigate Deformation of Soft Clay Subgrade Settlement—A Case Study of Lungui Highway, China

Author:

Xing Xuemin,Chang Hsing-Chung,Chen Lifu,Zhang Junhui,Yuan Zhihui,Shi Zhenning

Abstract

Monitoring surface movement near highways over soft clay subgrades is fundamental for understanding the dynamics of the settlement process and preventing hazards. Earlier studies have demonstrated the accuracy and cost-effectiveness of using time series radar interferometry (InSAR) technique to measure the ground deformation. However, the accuracy of the advanced differential InSAR techniques, including short baseline subset (SBAS) InSAR, is limited by the temporal deformation models used. In this study, a comparison of four widely used time series deformation models in InSAR, namely Multi Velocity Model (MVM), Permanent Velocity Model (PVM), Seasonal Model (SM) and Cubic Polynomial Model (CPM), was conducted to measure the long-term ground deformation after the construction of road embankment over soft clay subgrade. SBAS-InSAR technique with TerraSAR-X satellite imagery were conducted to generate the time series deformation data over the studied highway. In the experiments, three accuracy indices were applied to show the residual phase, mean temporal coherence and the RMS of high-pass deformation, respectively. In addition, the derived time series deformation maps of the highway based on the four selected models and 17 TerraSAR-X images acquired from June 2014 to November 2015 were compared. The leveling data was also used to validate the experimental results. Our results suggested the Seasonal Model is the most suitable model for the selected study site. Consequently, we analyzed two bridges in detail and three single points distributed near the highway. Compared with the ground leveling deformation measurements and results of other models, SM showed better consistency, with the accuracy of deformation to be ±7 mm.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3