A Deep Convolution Neural Network Method for Land Cover Mapping: A Case Study of Qinhuangdao, China

Author:

Hu YunfengORCID,Zhang Qianli,Zhang Yunzhi,Yan Huimin

Abstract

Land cover and its dynamic information is the basis for characterizing surface conditions, supporting land resource management and optimization, and assessing the impacts of climate change and human activities. In land cover information extraction, the traditional convolutional neural network (CNN) method has several problems, such as the inability to be applied to multispectral and hyperspectral satellite imagery, the weak generalization ability of the model and the difficulty of automating the construction of a training database. To solve these problems, this study proposes a new type of deep convolutional neural network based on Landsat-8 Operational Land Imager (OLI) imagery. The network integrates cascaded cross-channel parametric pooling and average pooling layer, applies a hierarchical sampling strategy to realize the automatic construction of the training dataset, determines the technical scheme of model-related parameters, and finally performs the automatic classification of remote sensing images. This study used the new type of deep convolutional neural network to extract land cover information from Qinhuangdao City, Hebei Province, and compared the experimental results with those obtained by traditional methods. The results show that: (1) The proposed deep convolutional neural network (DCNN) model can automatically construct the training dataset and classify images. This model performs the classification of multispectral and hyperspectral satellite images using deep neural networks, which improves the generalization ability of the model and simplifies the application of the model. (2) The proposed DCNN model provides the best classification results in the Qinhuangdao area. The overall accuracy of the land cover data obtained is 82.0%, and the kappa coefficient is 0.76. The overall accuracy is improved by 5% and 14% compared to the support vector machine method and the maximum likelihood classification method, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3